If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+9x^2=18x
We move all terms to the left:
5+9x^2-(18x)=0
a = 9; b = -18; c = +5;
Δ = b2-4ac
Δ = -182-4·9·5
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12}{2*9}=\frac{6}{18} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12}{2*9}=\frac{30}{18} =1+2/3 $
| X²+4y²-32y+38=0 | | 4x/15=64 | | 11x^2+14×=2685 | | 3x=|3x | | |x+3|=|x|+3 | | 4-5x=17-8x | | ×-y=16 | | 6(1+s)=12(s-3) | | W2+6w-17=0 | | 8-10x=6-9x | | 9(3^x)=72^x | | 5b+9=6b+4 | | 7=44/r-4 | | 42=6(14-x) | | 24-6x=4×+7 | | 2×(x+4)+3x=64 | | 2s+5=s-2 | | 2-k/2=5 | | -3(d+4)=21 | | 36=9(e+7) | | -3/4|b|=-3 | | 2x=340×0.8 | | 7xx90=294^2 | | 3s(s-2=125 | | 6+x×x=10 | | 6x^2+49x=98 | | 6y^2-5y-42=0 | | (x+8)^2-9=0 | | (x+8)(x+8)-9=0 | | 6x^2+25=75 | | 10x+28=4x+2 | | 2x^3-3x^2+6x-4=0 |